Christina Camell, PhD

Assistant Professor, and Biophysics Department of Biochemistry, Molecular Biology

Christina Camell

Contact Info

ccamell@umn.edu

Office Phone 612-625-9956

Office Address:
4-108 Nils Haselmo Hall

Assistant Professor, and Biophysics Department of Biochemistry, Molecular Biology

Faculty, MS and PhD Programs in Pharmacology

Faculty, Microbiology, Immunology and Cancer Biology (MICaB) Ph.D. Graduate Program


Summary

Expertise

immune-metabolism interactions, adipocytes, mouse models, aging, regulation of lipolysis and inflamation

Research

Research Summary/Interests

Age is associated with increased inflammation, visceral adiposity and metabolic disease. Tissue resident immune cells are required for dampening inflammation and maintaining tissue homeostasis. There are changes in resident immune cells that drive the increased inflammation and metabolic impairments that are seen with increased age.

We are studying the cellular and molecular changes within tissue resident immune cells that drive metabolic impairments in tissues. In particular, we are focused on lipolysis, a metabolic process that is required for release of energetic substrates from stored triglycerides in adipocytes. Lipolysis is impaired in aged individuals and this impairment may contributes to a worsened ability of elderly to maintain a healthy body-weight, stay warm or exercise.

Our work has previously shown that adipose tissue immune cells reside in microenvironment niches and are able to inhibit lipolysis in the aged adipose tissue. There are two broad projects within the lab:

  1. Adipose tissue macrophage-specific regulatory effects on lipolysis and inflammation during aging
  2. Fat-associated lymphoid cluster (FALC) and lymphocyte regulation of metabolism

Our lab focuses on mouse models of aging and uses a wide variety of techniques to investigate the changes occurring with age. We combine this in vivo approach with a complementary in vitro cell culture system to better understand a direct mechanism. Ultimately, our goal is to generate candidates that could be targets for therapeutically treating to improve health span and restore metabolism in the elderly.