Ethan Y. Leng

Ethan Leng


Entering Class:


Rice University
Bioengineering major
B.S., 2013

University of Minnesota
Biomedical Engineering Graduate Program
Ph.D., 2020

MSTP Student Governance:

  • Student Advisory Committee 2018-2020

Thesis Advisor: Greg Metzger, Ph.D.

Thesis Research:

Prostate cancer (PCa) is the most common cancer and 2nd leading cause of cancer death among men in the U.S. The use of multiparametric magnetic resonance imaging (mpMRI), a combination of traditional anatomic and newer functional MRI methods, has been shown recently to be helpful for the detection of PCa and identification of clinically significant disease. Although mpMRI is rapidly gaining traction in clinical practice, there are currently no established guidelines for the objective synthesis and evaluation of mpMRI data in widespread use.

The goal of my thesis research is to develop a fully-automated machine learning (ML)-based predictive model that will assess both PCa presence and grade using quantitative mpMRI. The resulting model can in turn be used to aid clinical decision making. Our lab has collected a database of over 50 PCa cases with mpMRI data and co-registered annotated histopathology of radical prostatectomy specimens for each case. The uniqueness of this dataset is that models can be developed on a voxelwise basis rather than requiring the pre-definition of ROIs. While the idea of using computational models for PCa detection is well-established, my proposed model is unique because it will 1) use our data set with a novel ground truth that is more reliable than those of existing models, 2) employ ML methods that will make it more generalizable than standard statistical models, and 3) explicitly aim to determine the extent and grade of PCa.

Publications (pubmed)

Masotti M, Zhang L, Leng E, Metzger GJ, Koopmeiners JS. A novel bayesian functional spatial partitioning method with application to prostate cancer lesion detection using MRI. Biometrics. 2021 Nov 22. Online ahead of print.

Jin J, Zhang L, Leng E, Metzger GJ, Koopmeiners JS. Bayesian spatial models for voxel-wise prostate cancer classification using multi-parametric magnetic resonance imaging data. Stat Med. 2021 Nov 7. Online ahead of print.

Saunders SL, Leng E, Spilseth B, Wasserman N, Metzger GJ, Bolan PJ. Training Convolutional Networks for Prostate Segmentation With Limited Data. IEEE Access. 2021;9:109214-109223. PMCID: PMC8438764

Leng E, Henriksen JC, Rizzardi AE, Jin J, Nam JW, Brassuer BM, Johnson AD, Reder NP, Koopmeiners JS, Schmechel SC, Metzger GJ. Signature maps for automatic identification of prostate cancer from colorimetric analysis of H&E- and IHC-stained histopathological specimens. Sci Rep. 2019 May 6;9(1):6992. PMCID: PMC6502869

Jin J, Zhang L, Leng E, Metzger GJ, Koopmeiners JS. Detection of prostate cancer with multiparametric MRI utilizing the anatomic structure of the prostate. Stat Med. 2018 Sep 30;37(22):3214-3229. PMCID: PMC6123293

Leng E, Spilseth B, Zhang L, Jin J, Koopmeiners JS, Metzger GJ. Development of a measure for evaluating lesion-wise performance of CAD algorithms in the context of mpMRI detection of prostate cancer. Med Phys. 2018 May;45(5):2076-2088. PMCID: PMC6734092