Kyba Lab

Michael KybaMichael Kyba, Ph.D. joined the faculty of the University of Minnesota in 2008. His research focuses on self-renewal of tissue-specific stem cells with a view towards gene correction, ex vivo expansion and therapeutic transplantation. His current focus is on investigating normal and pathological self-renewal in the context of regeneration, degenerative diseases and cancer. The lab investigates how transcription factors specify cell state/fate decisions, and how mechanisms responsible for these decisions control regeneration and may contribute to disease or be harnessed for regenerative therapies. Our model systems generally employ stem cells, both in vitro and in vivo.

Michael Kyba faculty profile

  • Current Lab Projects
  • Selected Publications
  • Lab Members
  • Current Lab Projects

    Deriving therapeutic hematopoietic stem cells from embryonic stem cells.

    ES cells are totipotent and capable of recapitulating all of the developmental events of embryogenesis. They are therefore theoretically the ideal source of cells for regenerative therapies. However, turning theory into practice is not straightforward, and very few successful models of such therapy exist. We have shown that in the case of the hematopoietic system, ES cells are programmed to undergo an embryonic mode of hematopoiesis, which produces a different array of cell types than the adult, and derives from a distinct, so called “primitive” hematopoietic stem cell. The primitive hematopoietic stem cell is incapable of engrafting when transplanted into lethally irradiated adult recipients. To derive adult, definitive hematopoietic stem cells, a developmental maturation process must be induced. Our goal is to understand the molecular details of this process: what secreted factors specify definitive hematopoiesis, and what key differences distinguish the primitive and definitive hematopoietic stem cells.

    ES Cells Derived Blood ColoniesThe Hox code for hematopoietic stem cell self-renewal.
    Gain of function studies with HoxB4 have shown that this Hox family member is involved in the regulation of self-renewal. Unfortunately, because other Hox genes cause leukemia when constitutively expressed, they have largely been ignored. By using conditional gene expression, we have shown that HoxB4 is neither unique in promoting hematopoietic stem cell self-renewal, nor most potent. We wish to understand how Hox genes control stem cell self-renewal, and are identifying regulatory circuits under Hox control.

    Specification of Hematopoietic Mesoderm.
    HoxB4 plays a role in the maturation of hematopoietic stem cells. We are also interested in factors that specify the origin of the hematopoietic stem cell in early mesoderm. Our ultimate goal is the synchronous generation of hematopoietic stem cells from ES cells. While therapeutically useful, it is also the gold standard by which we can judge our understanding of the process: if we can enforce with certainty a given lineage on the progeny of an ES cell, then we can be satisfied that we understand, at least at a basic level, the process of lineage selection.

    Skeletal muscle stem cells and FSH muscular dystrophy.
    Certain degenerative diseases may be the result of ineffective self-renewal or differentiation of lineage specific stem cells. We are particularly interested in Fascioscapulohumeral Muscular Dystrophy (FSHD), a dominant dystrophy associated with a contraction of 4q subtelomeric repeats. Although the condition is almost certainly caused by derepression of a gene in the viscinity of 4q, the protein products of candidate genes in this area can not be detected overexpressed in patient muscle samples. Because muscle stem cells (satellite cells) are rare, proteins overexpressed specifically in satellite cells are unlikely to be identified in patient biopsies. We are testing the hypothesis that a Hox gene embedded within the 4q repeats, DUX4, causes FSHD when derepressed in muscle satellite cells.

  • Selected Publications

    Recent papers:

    View a complete list of Dr. Kyba's articles at Experts@Minnesota

    1. Bosnakovski D, da Silva MT, Sunny ST, Ener ET, Toso EA, Yuan C, Cui Z, Walters MA, Jadhav A, Kyba M. "A novel P300 inhibitor reverses DUX4-mediated global histone H3 hyperazcetylation, target gene expression, and cell death." (2019) Science Advances. 5(9):eaaw7781. doi: 10.1126/scia81. eCollection 2019 Sep.
    2. Chan SS, Arpke RW, Filareto A, Xie N, Pappas MP, Penaloza JS, Perlingeiro RCR, Kyba M. "Skeletal Muscle Stem Cells from PSC-Derived Teratomas Have Functional Regenerative Capacity. " (2018) Cell Stem Cell. 23(1):74-85.e6. doi: 10.1016/j.stem.2018.06.010.
    3. Bosnakovski D, Chan SSK, Recht OO, Hartweck LM, Gustafson CJ, Athman LL, Lowe DA, Kyba M. "Muscle pathology from stochastic low level DUX4 expression in an FSHD mouse model. " (2017) Nat Commun. 8(1):550. doi: 10.1038/s41467-017-00730-1. Erratum in: Nat Commun. 2018 Feb 22;9(1):856.
    4. Goloviznina NA, Kyba M. "Twist of fate for skeletal muscle mesenchymal cells." (2017) Nat Cell Biol. 19(3):153-154. doi: 10.1038/ncb3482.
    5. Kyba M. "Mesoderm, Cooked Up Fast and Served to Order." (2016) Cell Stem Cell. 19(2):146-148. doi: 10.1016/j.stem.2016.07.007.
    6. Lee JK, Bosnakovski D, Toso EA, Dinh T, Banerjee S, Bohl TE, Shi K, Orellana K, Kyba M, Aihara H. "Crystal Structure of the Double Homeodomain of DUX4 in Complex with DNA." (2018) Cell Reports. 25(11):2955-2962.e3. doi: 10.1016/j.celrep.2018.11.060.
    Older papers of significance to the field:
    1. Dandapat A, Bosnakovski D, Baltgalvis KA, Vang D, Hartweck L, Baik J, Nash N, Darabi R, PerlingeiroRCR, Hamra FK, Gupta K, Lowe DA, Kyba M, (2014) “Dominant lethal pathologies in male mice engineered to contain an X-linked DUX4 transgene.” Cell Reports 8:1-13.
    2. Hartweck LM, Anderson LJ, Lemmers RJ, Dandapat A, Toso EA, Dalton JC, Tawil R, Day JW, van der Maarel SM, Kyba M. (2013) “A focal domain of extreme demethylation within D4Z4 in FSHD2.” Neurology 80:392-399.
    3. Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, Refetoff S, Peremans K, Manto M, Kyba M, Costagliola S. (2012) “Generation of functional thyroid from embryonic stem cells” Nature 491:66-71.
    4. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) “Human ES- and iPS-derived myogenic progenitors restore dystrophin and improve contractility upon transplantation in dystrophic mice” Cell Stem Cell 10:610-619.
    5. Bosnakovski D, Xu Z, Gang EJ, Galindo CL, Liu M, Simsek T, Garner HR, Agha-Mohammadi S, Tassin A, Frédérique Coppée, Belayew A, Perlingeiro RCR, Kyba M, (2008) “An isogenetic myoblast screen identifies DUX4-mediated FSHD-associated molecular pathologies” EMBO J. 27:2766-2779.
    6. Bosnakovski D, Xu Z, Li W, Thet S, Cleaver O, Perlingeiro RCR, Kyba M, (2008) “Prospective isolation of skeletal muscle stem cells with a Pax7 reporter” Stem Cells 26:3194-3204.
    7. Tang W, Zeve D, Suh J, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM. (2008) “White fat progenitor cells reside in the Adipose Vasculature” Science 322:583-536.
    8. Darabi, R, Gelbach, K, Bachoo, RM, Kamath, S, Osawa, M, Kamm, KE, Kyba M, Perlingeiro, RCR. (2008) “Functional skeletal muscle regeneration from differentiating embryonic stem cells” Nature Medicine, 14:134-143.
    9. Kyba, M, Perlingeiro, RCR, Daley, GQ. HoxB4 Confers Definitive Lymphoid-Myeloid Engraftment Potential on Embryonic Stem Cell and Yolk Sac Hematopoietic Progenitors. (2002) Cell 109:29-37.
    10. Rideout III WM*, Hochedlinger K*, Kyba M*, Daley GQ, Jaenisch R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell. 2002 109:17-27 *co-first author

    Full list of publications at Experts@Minnesota.

  • Lab Members


    Darko Bosnakovski, DVM, PhD | Adjunct Assistant Professor, U. Goce Delcev - Stip, R. Macedonia



    Natalya A. Goloviznina, BSc | Molecular, Cellular, Developmental Biology & Genetics Program

    Hossam A. Soliman, MD | Alexandria University, Egypt

    Ahmed S. Shams, MD | Suez Canal University, Egypt



    Erik A. Toso, MSc | Lab Manager



    Sithara T. Sunny | Genetics, Cell Biology, and Development

    Elizabeth T. Ener | Genetics, Cell Biology, and Development

    Johannes Weiblen | Biochemistry

    Benjamin Mai | Biochemistry

    Christian Palumbo | Biochemistry

    Daniel Chi | Biology

    Madison C. Douglas | Genetics, Cell Biology, and Development

    Madeline T. Chopp | Genetics, Cell Biology, and Development

    Josepf R. Tully | Neuroscience

    David Oyler | Biochemistry

    Olivia Stoa | Physiology

    Natalie Xu | Biomedical Engineering

    Arnav Barve | Wayzata High School