University of Minnesota Medical School researchers collaborate in cutting-edge cell bioengineering and unique 3D-printing techniques

Spinal scaffoldNOTE: following is an article orignally published by the University of Minnesota Medical School.

There are currently more than 285,000 people in the United States suffering from spinal cord injuries, and about 17,000 new spinal cord injuries each year. Engineers and medical researchers at the University of Minnesota have teamed up to create a 3D-printed device that could help some of those patients regain some function.

Ann Parr“Right now, there aren’t any good, precise treatments for people with long-term spinal cord injuries,” said Ann Parr (pictured at left), MD, PhD, Assistant Professor in the Department of Neurosurgery and Stem Cell Institute at the University of Minnesota Medical School.

Previously, there have been experiments involving cell injections into the spinal cord, but researchers have found only certain cells can be used and must be placed in specific areas.

Other methods have involved loading cells onto guides before implanting them, but the cells are not placed with precision, and generally the cells are of one type only and not specific.

The new process uses a 3D-printed guide, made of silicone, serving as a platform for specialized cells that are then 3D printed on top of it (pictured above right). The guide would be surgically implanted into the injured area of the spinal cord where it would serve as a type of “bridge” between living nerve cells above and below the area of injury. The hope is that this would help patients alleviate pain as well as regain some functions like control of muscles, bowel and bladder. This novel process offers the ability to print more than one cell type in specific locations to mimic the normal spinal cord.

Michael McAlpineThis latest research can be found in Advanced Functional Materials, co-authored by Parr and Michael McAlpine (pictured at left), PhD, Benjamin Mayhugh Associate Professor, Department of Mechanical Engineering.

Working with such delicate cells wasn’t easy. One of the biggest challenges was keeping the cells alive and ‘happy’ during the process.

“We tested several different formulas in the printing process,” said McAlpine. “The fact that we were able to keep about 75 percent of the cells alive during the 3D-printing process and then have them turn into active neurons is pretty amazing.”

There is still work to be done, but what lies ahead looks promising.

“We’ve found that relaying any signals across the injury could improve functions for the patients,” Parr said. “These simple improvements in function could greatly improve their lives.”

CLICK HERE to read the full press release.

CLICK HERE to read the Minneapolis-Star Tribune story.

Share this post

Related News

  • “I’m a neuroscience nurse and I’m proud of it,” said 2020 Chou Award Winner

    In June of 1991, former Neurosurgery Department Head Shelley Chou, MD, and his wife, Jolene (herself a nurse), endowed the Jolene and Shelley Chou Excellence in Neuroscience Nursing Award. The award honors expertise in the field of neuroscience nursing, reflecting how a nurse assesses, plans for, provides, and evaluates nursing care for neuroscience patients and their families.

  • Teenager with hydrocephalus takes it in stride

    Although no one knew it at the time, Pete Bigalk of Prior Lake, MN, was born with a condition known as craniosynostosis, which prevents the skull from widening. His parents brought him to the U’s Neurosurgery Department to see pediatric neurosurgeon Stephen Haines, MD.

  • New treatment helps glioblastoma sufferer continue to beat the odds

    “The first thing that happens is your whole marriage flashes in front of your eyes and you think, ‘Oh, this is how it’s going to end.’” That was Maria Erickson’s reaction in 2018 when she learned that her husband, Chad, had been diagnosed with glioblastoma, the most common – and deadliest – form of brain cancer in adults.