Small Animal Imaging

Requesting Training and Services

If you are interested in gaining access to UIC resources or requesting services please follow the steps on our training and service request page.

Cancer and Cardiovascular Research Building (CCRB)

Expand all

Cancer and Cardiovascular Research Building (CCRB)

IVIS Spectrum In vivo Imaging System

UIC_IVIS_SpectrumCCRB

The IVIS Spectrum is the most versatile and advanced optical animal in vivo imaging system available on the market today. An optimized set of high-efficiency filters and spectral unmixing algorithms lets you take full advantage of bioluminescent and fluorescent reporters across the blue to near-infrared wavelength region. It also offers 3D tomography for both fluorescent and bioluminescent reporters that can be analyzed in an anatomical context using the Digital Mouse Atlas.

For advanced fluorescence imaging, the IVIS Spectrum has the capability to use either trans-illumination (from the bottom) or epi-illumination (from the top) to illuminate in vivo fluorescent sources. 3D diffuse fluorescence tomography can be performed to determine source localization and concentration using the combination of structured light and trans-illumination fluorescent images. The instrument is equipped with 10 narrow-band excitation filters (30 nm bandwidth) and 18 narrow-band emission filters (20 nm bandwidth) that assist in significantly reducing autofluorescence by the spectral scanning of filters and the use of spectral unmixing algorithms. In addition, the spectral unmixing tools allow the researcher to separate signals from multiple fluorescent reporters within the same animal.

Additional details, specifications, and vendor protocols can be found on the PerkinElmer site.

Detector 

  • Andor Back-thinned, Back-illuminated CCD, cooled to -90 degrees C
  • 2048 x 2048 Pixels Array, 13.5-micron sensor size
  • 21.5 cm maximum image width (up to 5 mice)

Excitation

  • 430-745 nm (10 filters)
  • ND2 filter for trans-illumination

Emission

10 excitation filters with 30 nm bandwidth, and 18 emission filters with 20 nm bandwidth. The central filter wavelength is listed.

Excitation Emission
430 500
465 520
500 540
535 560
570 580
605 600
640 620
675 640
710 660
745 680
  700
  720
  740
  760
  780
  800
  820
  840

Sofie G8 µPET/CT

uic_sofie_g8

The Sofie G8 PET/CT high-performance benchtop PET/CT imaging system offers enhanced image quality, proper animal care, safety, and increased study volume.

Employing high-resolution detectors, fast electronics, and advanced 3D image reconstruction, G8 PET / CT’s small size does not sacrifice performance (14% sensitivity, 1.4 mm resolution) or image quality.

RESOLUTION

  • 200um reconstructed CT
  • 457um PET

G8 CT Specifications

X-ray Source 59 kVp, 100uA
X-ray Camera 75 micron pixels, 14bits, CMOS+Csl flat panel
Camera Speed 24 fps
Field of View 100mm axial by 50mm transaxial
Standard Scan Time <60 seconds
Dimensions 56 cm x 63 cm x 71 cm (W x D x H)
Weight 90 kg

G8 PET Performance Specifications

Axial FOV 9.5 cm
Transaxial FOV 4.7 cm
Detector element size 1.8 mm x 1.8 mm x 7 mm
Peak absolute system sensitivity* >14%
Reconstructed resolution at the center of FOV* 1.4 mm
Average energy resolution ≤18%
Energy window range 150 - 650 keV
Total number of detector elements 5,408
Reconstruction algorithm 3D ML-EM

Publication: Performance Evaluation of G8, a High-Sensitivity Benchtop Preclinical PET/CT Tomograph

Video file

uic_coronal

Vevo F2

uic_f2

Ultra-high to low frequency ultrasound (71–1 MHz) allows for imaging a range of animal models. Users now have the flexibility to image at low frequency for penetration and ultra-high frequency for resolution.

Available Licenses
Acquisition Software
 
Analysis Software

Jackson Hall

Expand all

Jackson Hall

IVIS Spectrum In vivo Imaging System

uic_spectrum

The IVIS Spectrum is the most versatile and advanced optical animal in vivo imaging system available on the market today. An optimized set of high-efficiency filters and spectral unmixing algorithms lets you take full advantage of bioluminescent and fluorescent reporters across the blue to near-infrared wavelength region. It also offers 3D tomography for both fluorescent and bioluminescent reporters that can be analyzed in an anatomical context using the Digital Mouse Atlas.

For advanced fluorescence imaging, the IVIS Spectrum has the capability to use either trans-illumination (from the bottom) or epi-illumination (from the top) to illuminate in vivo fluorescent sources. 3D diffuse fluorescence tomography can be performed to determine source localization and concentration using the combination of structured light and trans-illumination fluorescent images. The instrument is equipped with 10 narrow-band excitation filters (30 nm bandwidth) and 18 narrow-band emission filters (20 nm bandwidth) that assist in significantly reducing autofluorescence by the spectral scanning of filters and the use of spectral unmixing algorithms. In addition, the spectral unmixing tools allow the researcher to separate signals from multiple fluorescent reporters within the same animal.

Additional details, specifications, and vendor protocols can be found on the PerkinElmer site.

Detector 

  • Andor Back-thinned, Back-illuminated CCD, cooled to -90 degrees C
  • 2048 x 2048 Pixels Array, 13.5-micron sensor size
  • 21.5 cm maximum image width (up to 5 mice)

Excitation

  • 430-745 nm (10 filters)
  • ND2 filter for trans-illumination

Emission

10 excitation filters with 30 nm bandwidth, and 18 emission filters with 20 nm bandwidth. The central filter wavelength is listed.

Excitation Emission
430 500
465 520
500 540
535 560
570 580
605 600
640 620
675 640
710 660
745 680
  700
  720
  740
  760
  780
  800
  820
  840

Vevo 2100 Ultra High-Frequency Ultrasound

uic_vevo2100

Ultra High-Frequency ultrasound for small animal research has linear array technology, ideal for cardiovascular and cancer imaging.

The MicroScan transducers provide increased frame rates, superb contrast, unrivaled resolution and a wider field of view.

Available Imaging options for the Vevo 2100 system:

  • Super B-Mode (2D) imaging for anatomical visualization and quantification, with an enhanced temporal resolution with frame rates up to 740 fps (in 2D for a 4x4 mm FOV) , and enhanced image uniformity with multiple focal zones.

 

  • M-Mode for visualization and quantification of wall motion in cardiovascular research, single line acquisition allows for the very high-temporal (1000fps) resolution necessary for the analysis of LV function.
  • Anatomical M-Mode for adjustable anatomical orientation in reconstructed M-Mode imaging; the software automatically optimizes the field of view for maximum frame rate.
  • Pulsed-Wave Doppler Mode (PW) for quantification of blood flow.
  • Color Doppler Mode for detection of blood vessels including flow directional information and mean velocities; as well as for identification of small vessels not visible in B-Mode.
  • Power Doppler Mode for detection and quantification of blood flow in small vessels not visible in B-Mode; increased frame rates allow for significantly faster data acquisition. 
  • Tissue Doppler Mode for quantification of myocardial tissue movement; for example in assessing diastolic dysfunction.
  • Vevo MicroMarker Nonlinear Contrast Agent Imaging - for quantification of relative perfusion & molecular expression of endothelial cell surface markers; enhanced sensitivity to Vevo MicroMarker contrast agents as linear tissue signal is suppressed. 
  • 3D-Mode Imaging for anatomical and vascular visualization, when combined with either B-Mode, Power Doppler Mode, or Nonlinear Contract Imaging; allows for quantification of volume and vascularity within a defined anatomical structure.
  • Digital RF-Mode for the acquisition and exportation of radio frequency (RF) data in digital format for further analysis; fullscreen acquisition provides a complete data set for more comprehensive analysis and tissue characterization.

Product Name

MS 250

MS 400

MS 550D

MS 700

Primary Application

rat cardiology and abdominal (< 400 g) large tumor imaging (up to 23mm in diameter) all contrast applications

mouse cardiovascular, rat abdominal, rabbit eye, all vascular (mouse, rat, rabbit)

mouse abdominal, reproductive mouse, rat embryology tumor imaging (up to 14 mm in diameter) mouse vascular small rat vascular, some abdominal (kidney)

mouse embryology, epidermal imaging, superficial tissue, subcutaneous tumors (< 9 mm), mouse vascular, ophthalmology

Centre Frequency

21 MHz

30 MHz

40 MHz

50 MHz

Bandwidth

13-24 MHz

18-38 MHz

22-55 MHz

30-70 MHz

Geometric Focus

15.0 mm

9.0 mm

7.0 mm

5.0 mm

Image Width (Max)

23.0 mm

15.4 mm

14.1 mm

9.7 mm

Image Depth (Max)

30.0 mm

20.0 mm

15.0 mm

12.0 mm

Frame Rate (Single Zone) FOV (Width)

376 (6.04 mm)

449 (5.36 mm)

557 (5.08 mm)

476 (4.73 mm)

Image Axial Resolution

75 μm

50 μm

40 μm

30 μm

Image Lateral Resolution

165 μm

110 μm

90 μm

75 μm

Basic Contrast (Fundamental)

Yes

Yes

Yes

Yes

Nonlinear Contrast

Yes

No

No

No

Max Steering (Doppler)

15 degrees

15 degrees

15 degrees

15 degrees

Microbubble Burst Slice Thickness a,b

765 μm

570 μm

590 μm

630 μm

Footprint

28.0 mm x 5.75 mm

20.0 mm x 5.0 mm

20.0 mm x 5.0 mm

15.0 mm x 4.0 mm

Aspect Imaging M5 Compact MRI

uic_m5_mri

The M5 compact 1.0 Tesla, high-performance MRI system is designed with a larger bore opening for dedicated imaging of both mice and rats. The system provides non-invasive 3D anatomical, functional, and molecular read-outs in rodents and ex vivo samples.

 

The M compact, high-performance MRI system enables high-resolution 3D whole-body morphological imaging of mouse models of disease. Biologists and researchers without prior MR or imaging experience can now leverage the gold standard modality – MRI – for morphological imaging. The M5 quickly generates reproducible, quantitative results of phenotypes and therapeutic efficacy. For more information, see the Aspect Imaging M5 website.

Applications

Cancer
Cardiovascular
Contrast-based Molecular Imaging
Diabetes and Obesity
Embryology/Developmental Biology
Nephrology
Neurobiology
Stem Cell/Cell Tracking

 

Imaging Pulse Sequences

Spin Echo 2D
DWI – with diffusion gradients
IR – with preceding inversion pulse
Fast Spin Echo 2D and 3D
DWI – with diffusion gradients
IR – with preceding inversion pulse
Gradient Echo 2D and 3D
IRSnap GRE based with multiple inversion
time
DCE GRE based Dynamic Contrast
Enhancement
Cardiac Cine GRE based ECG triggered Cine
DTI FSE based diffusion tensor imaging
Dixon FSE based fat separation
Field of View 90 x 90 x 60 mm3
spheroid

Gradients

Strength 430 (X,Y,Z) mT/m @ 60 A
Linearity (for Entire Imaging Volume) Better than 5%
Slew Rate (T/m/s) 1720 T/m/s @ 60 A / 250 us