Michael Kyba
,
Credentials
PhD

Professor and Lillehei Endowed Scholar Carrie Ramey / CCRF Endowed Professor in Pediatric Cancer Research, Department of Pediatrics
Faculty Member, Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy Program
Director, LHI Summer Research Scholars Program, Lillehei Heart Institute
Faculty Member, Lillehei Heart Institute
Professor, Stem Cell Institute
Faculty, Microbiology, Immunology and Cancer Biology (MICaB) Ph.D. Graduate Program
Faculty, PhD Program in Molecular, Cellular, Developmental Biology and Genetics
Faculty, Masters Program in Stem Cell Biology
Biography

Bio

Dr. Kyba is a Professor of Pediatrics and Carrie Ramey / CCRF Endowed Professor in Pediatric Cancer Research in the Department of Pediatrics' Division of Blood and Marrow Transplant & Cellular Therapy. He is also an Endowed Scholar of the Lillehei Heart Institute, and an affiliate member of the Stem Cell Institute.
Dr. Kyba received his PhD degree from the University of British Columbia in 1998, and completed a postdoctoral fellowship in stem cell biology at the Whitehead Institute at MIT, Cambridge, MA in 2003. From 2003-2008, he was Assistant Professor of Developmental Biology at the University of Texas Southwestern Medical Center at Dallas, TX. He joined the faculty at the University of Minnesota in July 2008.
Dr. Kyba has published over 100 research manuscripts in scientific journals, including: Cell, Science, and Nature Medicine.

Research Summary

Dr. Kyba's research laboratory focuses on regulation of tissue-specific stem cells (hematopoietic and skeletal muscle) with a view towards ex-vivo expansion and therapeutic transplantation, as well as the derivation of tissue-specific stem cells from embryonic or iPS cells. He is also developing methods of performing BMT without irradiation or chemical conditioning. He has performed seminal experiments establishing the proof of principle for hematopoietic stem cell repopulation using embryonic stem cells and maintains an active program in the development of gene-targeting / genetic correction / cell therapy models.

Deriving therapeutic hematopoietic stem cells from embryonic stem cells.


ES cells are totipotent and capable of recapitulating all of the developmental events of embryogenesis. They are therefore theoretically the ideal source of cells for regenerative therapies. However, turning theory into practice is not straightforward, and very few successful models of such therapy exist. We have developed one successful model, based on regulated expression of members of the Hox family of transcription factors. Current work is focused on understanding how Hox genes regulate hematopoietic stem cell self-renewal and identifying regulatory circuits under Hox control.

Skeletal muscle stem cells and FSH muscular dystrophy


Certain degenerative diseases may be the result of ineffective self-renewal or differentiation of lineage specific stem cells. We are particularly interested in Fascioscapulohumeral Muscular Dystrophy (FSHD), a dominant dystrophy associated with a contraction of 4q subtelomeric repeats. Although the condition is almost certainly caused by derepression of a gene in the vicinity of 4q, the protein products of candidate genes in this area can not be detected overexpressed in patient muscle samples. Because muscle stem cells (satellite cells) are rare, proteins overexpressed specifically in satellite cells are unlikely to be identified in patient biopsies. We are testing the hypothesis that a Hox gene embedded within the 4q repeats, DUX4, causes FSHD when derepressed in muscle satellite cells.

Stem cell biology


Our long-term goal is to understand the pathways that control self-renewal vs differentiation of stem cells and to use this knowledge to understand degenerative diseases and to design and improve cell therapies. Our work is interdisciplinary, spanning iPS cell-based and animal models involving transplantation and tracking of somatic stem cells, vector development, CRISPR and TALEN-mediated genome editing, and cell-based screening and medicinal chemistry.

Education

PhD in Zoology, University of British Columbia ,Vancouver, BC V6T 1Z4, Canada

Fellowships, Residencies, and Visiting Engagements

Postdoctoral Fellowship in Stem Cell Biology,
Massachusetts Institute of Technology - Whitehead Institute
Cambridge, Massachusetts, United States

Honors and Recognition

Basil O’Connor Starter Scholar Research Award, March of Dimes
Carrie Ramey/CCRF Endowed Professor in Pediatric Cancer Research
Dr. Marvin and Hadassah Bacaner Research Award, Minnesota Medical Foundation
Innovator in Basic Science, Department of Pediatrics, University of Minnesota
Contact

Contact

Address

Pediatric Blood and Marrow Transplantation & Cellular Therapy
Mayo Mail Code 366
420 Delaware Street SE
Minneapolis, MN 55455

Administrative Contact

Sarah Jutila Peterson
Administrative Phone: 612-626-2920
Administrative Email: juti0009@umn.edu
Administrative Fax Number: 612-626-4074