Kamil Ugurbil

Director, Center for Magnetic Resonance Research
Professor of Radiology, Medicine (Joint Appointment), and Neuroscience (Joint Appointment)
Faculty, PhD Program in Medical Physics
Faculty, Graduate Program in Neuroscience


Kamil Ugurbil currently holds the McKnight Presidential Endowed Chair Professorship and is the founding Director of the Center for Magnetic Resonance Research (CMRR) at the University of Minnesota. After completing his B.A. and Ph.D. degrees in physics, and chemical physics, respectively, at Columbia University, New York, N.Y., Prof. Ugurbil  joined AT&T Bell Laboratories in 1977, and subsequently returned to Columbia as a faculty member in 1979. He was recruited to the University of Minnesota in 1982 where his research in magnetic resonance led to the evolution of his laboratory into an interdepartmental and interdisciplinary research center, the CMRR. His primary research focus has been the development and application of MR methods and instrumentation towards obtaining high spatiotemporal resolution and high accuracy functional and anatomical information in the human brain, and the development of ultrahigh magnetic fields for human imaging for biomedical research in general. This body of work has culminated in pioneering accomplishments, such as the co-introduction of functional brain imaging (fMRI), the introduction and development of ultrahigh magnetic fields (defined as ≥7 Tesla), functional mapping of columnar and layer specific functional responses in the human brain, highly accelerated functional brain imaging, and MR spectroscopy for studies of metabolism in vivo. He was one of the two PI’s of the Human Connectome Project and one of the fourteen members of the first BRAIN Initiative working group. He was recognized by several awards and honors including membership in the US National Academy of Medicine, American Academy of Arts and Sciences, Richard R. Ernst Gold Medal, ISMRM Gold Medal, ISMAR Prize, Koç Award, the IEEE Medal for Innovations in Healthcare Technology, and two honorary doctorates.

Research Summary

Kamil Ugurbil's central research interest is tackling biological problems, particularly in the brain, with new and transformative imaging technologies that involve instrumentation, image acquisition and reconstruction methods. His research is characterized by development of new technologies, and applications of these technologies, to obtain new and previously unavailable information about biological processes. This central interest was initially focused on developing, for the first time, new magnetic resonance (MR) spectroscopy methods to monitor intracellular chemistry in intact biological systems, using systems such as bacteria in suspension and perfused organs. This work pioneered the general field of using MR for the study of biological processes in vivo. In the past three decades, his focus has predominantly been the development of ultrahigh field MR methods for human neuroimaging, particularly for imaging brain activity (functional imaging (fMRI)) and connectivity and combining these methodological and instrumentation developments with neuroscience applications in the human and animal brain to advance our understanding of brain function in health and disease.

Dr. Ugurbil's research brings together physics and instrumentation with physiology, neuroscience and neurochemistry to assess cerebral function. fMRI was first achieved simultaneously by two independent teams; one was the team he lead at the Center for Magnetic Resonance Research (CMRR) at the University of Minnesota. This development has been followed by a large body of seminal work from his laboratory on the mechanisms of coupling between magnetic resonance detected signals and neuronal activity, and development of new instrumentation and techniques to exploit this information, leading to the most advanced neuroimaging studies we have today. 
The effort of his group to develop new technologies to advance neuroimaging pioneered the use of ultrahigh field (≥7 Tesla) imaging in humans, particularly (but not only) for pushing the boundaries of mapping brain function and connectivity. 7 Tesla and associated methods developed to overcome the significant challenges faced with imaging the human body at such high magnetic fields currently represent the most advanced platform used for human brain research and are now increasingly used world-wide. This effort also led to the development of instrumentation capable of human imaging above 10 Tesla for the first time (see the article The world’s strongest MRI machines are pushing human imaging to new limits).

Recently, these advances have been extended to mapping the macro-connectome of the human brain under the auspices of the Human Brain Connectome project launched by the NIH Neuroscience Blueprint initiative and continued through Human Connectome Project Lifespan project.


PhD, Columbia University
Major: Chemical Physics

Professional Memberships

National Academy of Medicine



2021 6th Street SE, Minneapolis, MN 55455