Research in the Bastian Lab focuses on uncovering the cellular/molecular mechanisms by which specific nutrients regulate brain development. We have a particular interest in metabolic interactions among micronutrients (e.g., iron, iodine, copper, and zinc) and metabolic regulators (e.g., thyroid hormone), which are directly involved in cellular energy metabolism in the developing brain. Our goal is to understand how these interactions contribute to proper brain development. We use primary neuron culture and in vivo transgenic approaches to manipulate cellular levels of micronutrients (and other metabolic pathways) in developing brain cells, allowing us to study interactions between cellular metabolic processes that are critical for neurodevelopment. This line of research is also clinically relevant as early-life micronutrient deficiencies are common and cause abnormal neurodevelopment in humans.
Currently, our main research focus is on how early-life iron deficiency and subsequent iron repletion alter mitochondrial energy metabolism in developing neurons and how this contributes to the neurobehavioral deficits that persist into adulthood. A second goal is to understand how intracellular iron storage and utilization is regulated in developing neurons.